Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69.133
1.
PLoS One ; 19(5): e0300819, 2024.
Article En | MEDLINE | ID: mdl-38722920

The role of endemic species in global biodiversity is pivotal, and understanding their biology and ecology is imperative for their fitness and long-term survival, particularly in the face of ongoing climatic oscillations. Our primary goal was to investigate the sexual reproduction level of the endangered Western Carpathian endemic Daphne arbuscula (Thymelaeaceae), which inhabits extreme rocky habitats, and to comprehend the influence of specific factors on its reproductive success. We conducted the research across four populations, varying in size and environmental conditions. Over two years, we monitored flower and fruit production, analyzed genetic variability within and among populations, and studied pollination mechanisms. Daphne arbuscula proved to be strictly self-incompatible, with significant variations in flower and fruit production among populations and seasons. The average fruit production percentage consistently remained below 50% across populations, indicating challenges in sexual reproduction. Cold and harsh weather during the reproductive phase had a substantial negative impact on sexual reproduction efficacy, leading to decreased fruit production. Nevertheless, several individuals in sheltered microhabitats displayed significantly higher fruit production, ranging from 60% to 83%, emphasizing the critical role of microhabitat heterogeneity in sustaining sexual reproduction in this species. We found no pronounced differences in genetic diversity within or among populations, suggesting that genetic factors may not critically influence the reproductive success of this endemic species. The implications of our findings might be of paramount importance for the long-term survival of D. arbuscula and offer valuable insights for the development of effective conservation strategies for this species.


Daphne , Flowers , Pollination , Reproduction , Daphne/genetics , Daphne/physiology , Flowers/physiology , Flowers/genetics , Genetic Variation , Ecosystem , Fruit/genetics , Seasons
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731841

Plutella xylostella (Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance. We discovered two genes related to the reproduction of Plutella xylostella and investigated the efficacy of combining irradiation with RNA interference for pest management. The results demonstrate that after injecting PxAKT and PxCDK5, there was a significant decrease of 28.06% and 25.64% in egg production, and a decrease of 19.09% and 15.35% in the hatching rate compared to the control. The ratio of eupyrene sperm bundles to apyrene sperm bundles also decreased. PxAKT and PxCDK5 were identified as pivotal genes influencing male reproductive processes. We established a dose-response relationship for irradiation (0-200 Gy and 200-400 Gy) and derived the irradiation dose equivalent to RNA interference targeting PxAKT and PxCDK5. Combining RNA interference with low-dose irradiation achieved a sub-sterile effect on Plutella xylostella, surpassing either irradiation or RNA interference alone. This study enhances our understanding of the genes associated with the reproduction of Plutella xylostella and proposes a novel approach for pest management by combining irradiation and RNA interference.


Cyclin-Dependent Kinase 5 , Proto-Oncogene Proteins c-akt , RNA Interference , Animals , Male , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Fertility/radiation effects , Fertility/genetics , Moths/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Female , Reproduction/radiation effects , Reproduction/genetics
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731898

The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.


Aging , NAD , Ovary , Humans , Female , NAD/metabolism , Aging/metabolism , Aging/physiology , Ovary/metabolism , Animals , Sirtuins/metabolism , Energy Metabolism , Fertility/physiology , Reproduction/physiology
4.
Sci Rep ; 14(1): 10447, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714726

Polyandry, the practice of females mating with multiple males, is a strategy found in many insect groups. Whether it increases the likelihood of receiving beneficial genes from male partners and other potential benefits for females is controversial. Strepsiptera are generally considered monandrous, but in a few species females have been observed copulating serially with multiple males. Here we show that the offspring of a single female can have multiple fathers in two Strepsiptera species: Stylops ovinae (Stylopidae) and Xenos vesparum (Xenidae). We studied female polyandry in natural populations of these two species by analysis of polymorphic microsatellite loci. Our results showed that several fathers can be involved in both species, in some cases up to four. Mating experiments with S. ovinae have shown that the first male to mates with a given female contributes to a higher percentage of the offspring than subsequent males. In X. vesparum, however, we found no significant correlation between mating duration and offspring contribution. The prolonged copulation observed in S. ovinae may have the advantage of reducing competition with sperm from other males. Our results show that monandry may not be the general pattern of reproduction in the insect order Strepsiptera.


Insecta , Microsatellite Repeats , Sexual Behavior, Animal , Spermatozoa , Animals , Male , Female , Sexual Behavior, Animal/physiology , Spermatozoa/physiology , Insecta/physiology , Microsatellite Repeats/genetics , Reproduction/physiology
5.
Reprod Health ; 21(1): 61, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698459

Vitamin D is a fat-soluble steroid hormone that was initially known only for regulating calcium and phosphorus levels and maintaining bone health. However, it was later discovered that many organs express vitamin D metabolizing enzymes and have a ligand for vitamin D, which regulates the expression of an extensive assortment of genes. As a result, vitamin D is indispensable for the proper function of organs, and its deficiency is believed to be a critical factor in symptoms and disorders such as cardiovascular diseases, autoimmune diseases, and cancers. The significance of vitamin D in reproductive tissues was recognized later, and studies have revealed its crucial role in male and female fertility, as well as proper reproductive function during pregnancy. Vitamin D deficiency has been identified as a risk factor for infertility, gonadal cancers, pregnancy complications, polycystic ovary syndrome, and endometriosis. However, data investigating the association between vitamin D levels and reproductive disorders, including endometriosis, have encountered inconsistencies. Therefore, the present study aims to review existing research on the effect of vitamin D on proper reproductive function, and the role of deficiency in reproductive diseases and specifically focuses on endometriosis.


Endometriosis , Vitamin D Deficiency , Vitamin D , Humans , Endometriosis/metabolism , Female , Vitamin D/blood , Vitamin D/metabolism , Vitamin D Deficiency/complications , Pregnancy , Reproduction/physiology , Infertility, Female/etiology
6.
Sci Prog ; 107(2): 368504241245222, 2024.
Article En | MEDLINE | ID: mdl-38745552

A significant body of evidence indicates that climate change is influencing many aspects of avian ecology. Yet, how climate change is affecting, and is expected to influence some aspects of the breeding ecology of cavity-nesting birds remains uncertain. To explore the potential linkage between timing of first clutch, and the influence of ambient temperature on hatching success, we used Eastern Bluebird (Sialia sialis) nest records over a nine-year period from Alabama, USA. We investigated changes to annual clutch initiation dates, as well as variability in hatching success associated with ambient air temperatures during the incubation period. Using a simple linear model, we observed earlier annual egg laying dates over the nine years of this study with a difference of 24 days between earliest egg-laying date of the season. Daily temperature minima increased 2 °C across the nine-year time frame of this study. These data also indicate that Eastern Bluebird hatching success was the highest when mean ambient air temperature during incubation was between 19 °C and 24 °C (78%, as opposed to 69% and 68% above and below this temperature range, respectively). Our findings of increasing maxima, earlier maxima each year, and the lower minima of temperatures within our study area could expand the breadth of temperatures experienced by nesting Eastern Bluebirds possibly exposing them to temperatures outside of what promotes nesting success. These findings with a cavity-nesting bird highlight an optimal range of ambient temperatures associated with highest hatching success, conditions likely to be affected by climate change.


Climate Change , Nesting Behavior , Temperature , Animals , Nesting Behavior/physiology , Reproduction/physiology , Songbirds/physiology , Alabama , Seasons , Birds/physiology
7.
An Acad Bras Cienc ; 96(2): e20230949, 2024.
Article En | MEDLINE | ID: mdl-38747794

In general snakes show differentiate anatomical, biological and behavioral particularities compared to other species. Basic information about the snakes anatomy, physiology and reproductive biology is scarce in several species, making the reproduction a challenge. Thus, the present work aims to evaluate morphological aspects of the Corallus hortulanus testes, correlating these findings with environmental factors and reproductive aspects. The testes of three specimens of Corallus hortulanus were cut to a thickness of 3µm in microtome, stained with 1% toluidine blue, photo documented and described. Seasonality was observed in the sperm production of Corallus hortulanus, with the presence of mature spermatozoa in the wettest and hottest periods of the year, as well as the largest testicular volume in these periods.


Seasons , Testis , Male , Testis/anatomy & histology , Testis/physiology , Animals , Reproduction/physiology , Spermatozoa/physiology , Spermatozoa/cytology , Colubridae/anatomy & histology , Colubridae/physiology
8.
PLoS Biol ; 22(5): e3002620, 2024 May.
Article En | MEDLINE | ID: mdl-38743647

Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.


Reproduction , Seasons , Starfish , Animals , Starfish/genetics , Starfish/metabolism , Starfish/physiology , Reproduction/genetics , Female , Male , Stress, Physiological/genetics , Gene Expression Regulation , Transcription Factors/metabolism , Transcription Factors/genetics , Organ Specificity/genetics , Coral Reefs
9.
Reprod Fertil Dev ; 362024 May.
Article En | MEDLINE | ID: mdl-38744493

Poly- and perfluoroalkyl substances (PFAS) are a prominent class of persistent synthetic compound. The widespread use of these substances in various industrial applications has resulted in their pervasive contamination on a global scale. It is therefore concerning that PFAS have a propensity to accumulate in bodily tissues whereupon they have been linked with a range of adverse health outcomes. Despite this, the true extent of the risk posed by PFAS to humans, domestic animals, and wildlife remains unclear. Addressing these questions requires a multidisciplinary approach, combining the fields of chemistry, biology, and policy to enable meaningful investigation and develop innovative remediation strategies. This article combines the perspectives of chemists, soil scientists, reproductive biologists, and health policy researchers, to contextualise the issue of PFAS contamination and its specific impact on reproductive health. The purpose of this article is to describe the challenges associated with remediating PFAS-contaminated soils and waters and explore the consequences of PFAS contamination on health and reproduction. Furthermore, current actions to promote planetary health and protect ecosystems are presented to instigate positive social change among the scientific community.


Animals, Wild , Environmental Pollutants , Fluorocarbons , Reproductive Health , Animals , Humans , Fluorocarbons/toxicity , Fluorocarbons/adverse effects , Fluorocarbons/analysis , Livestock , Reproduction/drug effects , Environmental Pollution/adverse effects , Environmental Pollution/analysis , Environmental Exposure/adverse effects
10.
Sci Rep ; 14(1): 11080, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744943

Much of the evolutionary literature on mate choice presumes that individual mate preferences function to increase individual fitness, and this assumption has been confirmed in several experimental studies with animals. However, human mate choice, in many cultures, is heavily controlled by parents via arranged marriages, rather than the selection of the marrying individuals. Several studies have demonstrated that parents and offspring do not exhibit identical preferences for an in-law or spouse, respectively. If parental choice thwarts offspring's evolved mate preferences from being expressed, then arranged marriages should reduce fitness. Using data from the Chitwan Valley Family Study, I examined whether having an arranged marriage, as compared to a non-arranged marriage, is associated with differences in total births, offspring survival to age 15, or interbirth intervals in Nepal, a culture with a rich history of arranged marriage. I find that there are no differences in any reproductive outcomes between arranged, co-selected, and self-selected marriages. These results indicate that individuals in arranged and non-arranged marriages may achieve similar fitness outcomes via different pathways, which may be unique to human mating systems.


Marriage , Reproduction , Humans , Nepal , Female , Male , Adult , Adolescent
11.
Sci Rep ; 14(1): 10934, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740841

Cyanobacteria bloom and the secondary metabolites released by the microorganism are extremely harmful to aquatic animals, yet study on their adverse effects in zoobenthos is rare. Corbicula fluminea widely distributed in freshwater environment with algal blooms. It is a typical filter feeding zoobenthos that may be affected by the secondary metabolites of cyanobacteria due to its high filtering rate. In this study, C. fluminea was exposed to Microcystis aeruginosa exudates (MaE) for 96 h, which was obtained from 5 × 105 cells/mL and 2.5 × 106 cells/mL exponential stage M. aeruginosa culture solution that represented cyanobacteria cell density needs environmental risk precaution control and emergent control, respectively. The responses of C. fluminea critical organs to MaE were analyzed and evaluated based on histopathological sections, antitoxicity biomarkers, and organ function biomarkers. The results showed that all the organs underwent structural disorders, cell vacuolization, apoptosis, and necrosis, and the damage levels increased as MaE concentration increased. The detoxification and antioxidant defense systems biomarkers in each organ response to MaE exposure differently and the level of reaction improved when MaE concentration increased. The siphon rate and acetylcholinesterase activity showed that the filtration function decreased significantly as the MaE concentration increased. Increased activity of glutathione S-transferase and amylase in the digestive gland indicate that it is the major detoxification organ of C. fluminea. Increased vitellogenin concentration and enlarged oocytes in the gonad indicate that MaE may have an estrogenic effect on C. fluminea. This study demonstrates that cyanobacteria threat benthic bivalves by inducing oxidative stress, inhibiting filtering feeding system, and disturbing digestion system and reproduction potential of C. fluminea.


Corbicula , Microcystis , Reproduction , Animals , Microcystis/metabolism , Corbicula/metabolism , Corbicula/microbiology , Filtration , Biomarkers/metabolism
12.
Glob Chang Biol ; 30(5): e17308, 2024 May.
Article En | MEDLINE | ID: mdl-38721885

At high latitudes, the suitable window for timing reproductive events is particularly narrow, promoting tight synchrony between trophic levels. Climate change may disrupt this synchrony due to diverging responses to temperature between, for example, the early life stages of higher trophic levels and their food resources. Evidence for this is equivocal, and the role of compensatory mechanisms is poorly understood. Here, we show how a combination of ocean warming and coastal water darkening drive long-term changes in phytoplankton spring bloom timing in Lofoten Norway, and how spawning time of Northeast Arctic cod responds in synchrony. Spring bloom timing was derived from hydrographical observations dating back to 1936, while cod spawning time was estimated from weekly fisheries catch and roe landing data since 1877. Our results suggest that land use change and freshwater run-off causing coastal water darkening has gradually delayed the spring bloom up to the late 1980s after which ocean warming has caused it to advance. The cod appear to track phytoplankton dynamics by timing gonadal development and spawning to maximize overlap between offspring hatch date and predicted resource availability. This finding emphasises the importance of land-ocean coupling for coastal ecosystem functioning, and the potential for fish to adapt through phenotypic plasticity.


Climate Change , Phytoplankton , Seasons , Phytoplankton/physiology , Phytoplankton/growth & development , Animals , Norway , Reproduction , Gadus morhua/physiology , Gadus morhua/growth & development , Seawater , Temperature
13.
Mol Biol Rep ; 51(1): 631, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722405

Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.


Nicotinamide Phosphoribosyltransferase , Polycystic Ovary Syndrome , Reproduction , Female , Humans , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Reproduction/physiology , Reproduction/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/physiopathology , Animals , Ovary/metabolism , Uterus/metabolism , Cytokines/metabolism , Pregnancy , Adipokines/metabolism
14.
Trop Anim Health Prod ; 56(4): 155, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727965

Kangayam cattle are one of the drought breeds in India with distinct attributes. Agricultural transformation has led to a decline in many pure-breed indigenous cattle, including the Kangayam breed. Hence, a study on the reproductive physiology of male Kangayam breed cattle is necessary to disentangle problems in the area of livestock improvement. In this study, we investigated the relationship between serum hormones and bio-constituents and ascertained the potential of saliva as an indicator of the reproductive status of Kangayam cattle (Bos indicus). The present study confirms that cholesterol was higher in intact males and lower in prepubertal and castrated males. Testosterone levels were also higher in intact males than in castrated or prepubertal males. Hence, it can be inferred that high cholesterol levels contribute to active derivatization of testosterone in intact males. In contrast, reduced cholesterol availability leads to decreased testosterone synthesis in castrated and prepubertal males. Furthermore, it is reasonable to speculate that testosterone could have influenced salivary fern patterns in intact males, and thus, fern-like crystallization in the saliva was apparent. The unique salivary compounds identified through GC-MS across various reproductive statuses of Kangayam males may advertise their physiological status to conspecifics. In addition, the presence of odorant-binding protein (OBP) in saliva further supports its role in olfactory communication. This study attested to a posssible interlink between gonadal status and serum biochemical profiles. The salivary fern pattern revealed in this study can be used as a predictive tool, and the presence of putative volatiles and OBP adds evidence to the role of saliva in chemical communication.


Cholesterol , Saliva , Testosterone , Animals , Male , Cattle/physiology , Saliva/chemistry , Testosterone/blood , Testosterone/analysis , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Reproduction/physiology , India , Gas Chromatography-Mass Spectrometry/veterinary
15.
Front Endocrinol (Lausanne) ; 15: 1357594, 2024.
Article En | MEDLINE | ID: mdl-38699384

In mammals, gonadal somatic cell lineage differentiation determines the development of the bipotential gonad into either the ovary or testis. Sertoli cells, the only somatic cells in the spermatogenic tubules, support spermatogenesis during gonadal development. During embryonic Sertoli cell lineage differentiation, relevant genes, including WT1, GATA4, SRY, SOX9, AMH, PTGDS, SF1, and DMRT1, are expressed at specific times and in specific locations to ensure the correct differentiation of the embryo toward the male phenotype. The dysregulated development of Sertoli cells leads to gonadal malformations and male fertility disorders. Nevertheless, the molecular pathways underlying the embryonic origin of Sertoli cells remain elusive. By reviewing recent advances in research on embryonic Sertoli cell genesis and its key regulators, this review provides novel insights into sex determination in male mammals as well as the molecular mechanisms underlying the genealogical differentiation of Sertoli cells in the male reproductive ridge.


Cell Differentiation , Cell Lineage , Sertoli Cells , Sertoli Cells/cytology , Sertoli Cells/metabolism , Sertoli Cells/physiology , Male , Humans , Animals , Reproduction/physiology , Spermatogenesis/physiology , Sex Determination Processes/physiology
16.
Sci Rep ; 14(1): 10172, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702411

The intricate hormonal and physiological changes of the menstrual cycle can influence health on a daily basis. Although prior studies have helped improve our understanding of the menstrual cycle, they often lack diversity in the populations included, sample size, and the span of reproductive and life stages. This paper aims to describe the dynamic differences in menstrual cycle characteristics and associated symptoms by age in a large global cohort of period-tracking application users. This work aims to contribute to our knowledge and understanding of female physiology at varying stages of reproductive aging. This cohort study included self-reported menstrual cycle and symptom information in a sample of Flo application users aged 18-55. Cycle and period length and their variability, and frequency of menstrual cycle symptom logs are described by the age of the user. Based on data logged by over 19 million global users of the Flo app, the length of the menstrual cycle and period show clear age-associated patterns. With higher age, cycles tend to get shorter (Cycle length: D ¯ = 1.85 days, Cohen's D = 0.59) and more variable (Cycle length SD: D ¯ = 0.42 days, Cohen's D = 0.09), until close to the chronological age (40-44) suggesting menopausal transition, when both cycles and periods become longer (Cycle length: D ¯ = 0.86 days, t = 48.85, Cohen's D = 0.26; Period length: D ¯ = 0.08, t = 15.6, Cohen's D = 0.07) and more variable (Cycle length SD: D ¯ = 2.80 days, t = 111.43, d = 0.51; Period length SD: D ¯ = 0.23 days, t = 67.81, Cohen's D = 0.31). The proportion of individuals with irregular cycles was highest in participants aged 51-55 (44.7%), and lowest in the 36-40 age group (28.3%). The spectrum of common menstrual cycle-related symptoms also varies with age. The frequency of logging of cramps and acne is lower in older participants, while logs of headache, backache, stress, and insomnia are higher in older users. Other symptoms show different patterns, such as breast tenderness and fatigue peaking between the ages of 20-40, or mood swings being most frequently logged in the youngest and oldest users. The menstrual cycle and related symptoms are not static throughout the lifespan. Understanding these age-related differences in cycle characteristics and symptoms is essential in understanding how best to care for and improve the daily experience for menstruators across the reproductive life span.


Menstrual Cycle , Humans , Female , Menstrual Cycle/physiology , Adult , Middle Aged , Adolescent , Young Adult , Cohort Studies , Reproduction/physiology , Self Report , Age Factors , Aging/physiology
17.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Article En | MEDLINE | ID: mdl-38709196

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Climate Change , Fagus , Seasons , Temperature , Fagus/growth & development , Fagus/physiology , Europe , Seeds/growth & development , Seeds/physiology , Reproduction , Trees/growth & development , Trees/physiology , Pollination
18.
Reprod Domest Anim ; 59(5): e14578, 2024 May.
Article En | MEDLINE | ID: mdl-38715446

To the best of the authors' knowledge, no study has previously investigated whether the concentration of minerals is related to reproductive outcomes in primiparous cows. For this reason, two objectives were set in the present study: (i) to assess serum mineral levels, macrominerals, and trace elements during the transition period (period of high nutritional requirements) in primiparous cows, considering reproductive efficiency, and (ii) to address if the serum mineral levels of primiparous cows are related to reproductive efficiency. Blood samples were taken (i) one month before calving, (ii) one week before calving, (iii) one week postpartum, and (iv) one month postpartum. At the beginning and the end of the study, a body condition score (BCS) was assigned to each lactating cow with no clinical signs of disease. The difference between one month before and one month after calving was the body condition loss (ΔBCS). Optimal prepartum concentrations of K and Cl were associated with fewer days open and a shorter interval calving. Furthermore, macrominerals in the serum decreased immediately after calving (one week) but recovered at one month postpartum. In contrast, the highest concentration of trace elements was found at one week postpartum. Primiparous cows with higher postpartum Se, Mn, Co, and Mo concentrations exhibited better reproductive efficiency, and the concentrations of trace elements in serum were correlated with interval calving and the number of inseminations. Finally, primiparous cows with a greater ΔBCS (at least one point) in period 4 exhibited both a longer calving interval and a greater number of days open. In summary, this study showed, for the first time in primiparous cows, that the concentration of some serum minerals not only plays a crucial role during the transition period but is also related to crucial reproductive parameters, such as interval calving and days open.


Lactation , Minerals , Parity , Peripartum Period , Reproduction , Animals , Female , Cattle/physiology , Cattle/blood , Peripartum Period/blood , Pregnancy , Minerals/blood , Reproduction/physiology , Lactation/physiology , Trace Elements/blood , Postpartum Period/blood
19.
Ecol Lett ; 27(5): e14434, 2024 May.
Article En | MEDLINE | ID: mdl-38716556

Anthropogenic habitat modification can indirectly effect reproduction and survival in social species by changing the group structure and social interactions. We assessed the impact of habitat modification on the fitness and life history traits of a cooperative breeder, the Arabian babbler (Argya squamiceps). We collected spatial, reproductive and social data on 572 individuals belonging to 21 social groups over 6 years and combined it with remote sensing to characterize group territories in an arid landscape. In modified resource-rich habitats, groups bred more and had greater productivity, but individuals lived shorter lives than in natural habitats. Habitat modification favoured a faster pace-of-life with lower dispersal and dominance acquisition ages, which might be driven by higher mortality providing opportunities for the dominant breeding positions. Thus, habitat modification might indirectly impact fitness through changes in social structures. This study shows that trade-offs in novel anthropogenic opportunities might offset survival costs by increased productivity.


Ecosystem , Life History Traits , Animals , Male , Female , Reproduction , Passeriformes/physiology , Genetic Fitness , Anthropogenic Effects
20.
Biol Lett ; 20(5): 20240002, 2024 May.
Article En | MEDLINE | ID: mdl-38689558

Group living may entail local resource competition (LRC) which can be reduced if the birth sex ratio (BSR) is biased towards members of the dispersing sex who leave the group and no longer compete locally with kin. In primates, the predicted relationship between dispersal and BSR is generally supported although data for female dispersal species are rare and primarily available from captivity. Here, we present BSR data for Phayre's leaf monkeys (Trachypithecus phayrei crepusculus) at the Phu Khieo Wildlife Sanctuary, Thailand (N = 104). In this population, nearly all natal females dispersed, while natal males stayed or formed new groups nearby. The slower reproductive rate in larger groups suggests that food can be a limiting resource. In accordance with LRC, significantly more females than males were born (BSR 0.404 males/all births) thus reducing future competition with kin. This bias was similar in 2-year-olds (no sex-differential mortality). It became stronger in adults, supporting our impression of particularly fierce competition among males. To better evaluate the importance of BSR, more studies should report sex ratios throughout the life span, and more data for female dispersal primates need to be collected, ideally for multiple groups of different sizes and for several years.


Competitive Behavior , Sex Ratio , Animals , Female , Male , Thailand , Competitive Behavior/physiology , Animal Distribution , Reproduction/physiology
...